0 avis
NOMBRES (THÉORIE DES) - Nombres algébriques
Article
Edité par Encyclopædia Universalis - 2009
Les mathématiciens grecs avaient découvert que certains rapports de grandeurs ne sont pas rationnels, c'est-à-dire qu'ils ne sont pas égaux au rapport de deux entiers : il en est ainsi du rapport de la diagonale d'un carré à son côté, puisque aucun nombre rationnel n'a un carré égal à 2. Plus généralement, Théétète (ve s. avant J.-C.) a établi qu'un entier qui n'est pas le carré d'un entier n'est pas non plus le carré d'un nombre rationnel. Le dixième livre des Éléments d'Euclide est consacré à l'étude et à la classification des grandeurs irrationnelles rencontrées dans les constructions géométriques.Les recherches sur les équations algébriques ont toujours été inséparables de problèmes touchant la nature des solutions de ces équations. Durant le XVIIIe siècle, il fut établi que les n racines d'une équation algébrique de degré n à coefficients réels étaient des nombres complexes (cf. nombres complexes). On appelle maintenant nombre algébrique tout nombre complexe qui est racine d'une équation algébrique à coefficients rationnels : ainsi 2, racine de l'équation x2 − 2 = 0, ou bien i, racine de l'équation x2 + 1 = 0, ou encore e2iπ/n, racine de xn − 1 = 0, sont des nombres algébriques ; au contraire e, π, log 2 ou ii ne sont pas des nombres algébriques (cf. nombres transcendants).
- Sujets