0 avis
ALGÈBRE
Article
Source : Universalis Edu - 2017
L'algèbre au sens moderne, à savoir l'étude des structures algébriques indépendamment de leurs réalisations concrètes, ne s'est dégagée que très progressivement au cours du xixe siècle, en liaison avec le mouvement général d'axiomatisation de l'ensemble des mathématiques et la préoccupation croissante des mathématiciens de « substituer les idées au calcul » ; jusqu'alors, le propos essentiel de l'algèbre avait été la résolution, par des formules explicites, des équations algébriques. Les tentatives infructueuses pour résoudre les équations générales de degré supérieur ou égal à cinq, ainsi que les problèmes de la théorie des nombres, conduisirent alors les mathématiciens à introduire des êtres mathématiques de nature nouvelle qui présentaient entre eux des analogies étroites dans leur maniement et par suite à ressentir le besoin de dégager ce qui pouvait être commun à toutes ces situations. Ils furent ainsi amenés à penser que la « nature » des objets mathématiques étudiés est au fond secondaire, et le mathématicien anglais George Boole pouvait déclarer en 1847 : « La mathématique traite les opérations considérées en elles-mêmes, indépendamment des matières diverses auxquelles elles peuvent être appliquées. »Tout au long du xixe siècle va se développer ce processus d'axiomatisation de l'algèbre qui aboutit aux structures actuelles. Si, dès 1850, les mathématiciens anglais ont dégagé avec une parfaite netteté la notion de loi de composition et l'appliquent à des situations variées (vecteurs, matrices, algèbre de la logique), il faudra attendre 1910 pour trouver dans la vaste synthèse de Steinitz l'exposé abstrait qui marque le début de l'algèbre moderne proprement dite.L'étude des groupes domine tout d'abord les préoccupations de cette époque ; introduite par Cauchy et surtout mise en évidence par Galois qui en a montré l'importance dans la théorie des équations, cette notion va jouer un rôle essentiel dans presque tous les domaines des mathématiques, en physique et en mécanique quantique. Les travaux des mathématiciens allemands sur les nombres algébriques seront à l'origine de l'étude des corps et des anneaux commutatifs et ces notions apparaîtront comme les outils essentiels pour étudier les courbes et surfaces algébriques, conduisant à la géométrie algébrique abstraite ; ainsi s'introduit le langage géométrique en algèbre commutative. L'algèbre linéaire prend une grande importance lorsqu'après une axiomatisation convenable les mathématiciens s'aperçoivent du caractère linéaire de nombreuses situations et de l'importance du processus de linéarisation. Et comme « la mathématique est un organisme dont la force vitale a pour condition l'indissoluble union de ses parties » (Hilbert, Conclusion de la conférence de 1900), l'algèbre a rejoint avec succès l'analyse par la considération simultanée, sur un même ensemble, de structures algébriques et topologiques (constituant ainsi la branche des mathématiques appelée algèbre topologique).