DIVISIBILITÉ

Article

Marcel DAVID

Edité par Encyclopædia Universalis - 2009

L'étude élémentaire de la divisibilité dans l'anneau Z des entiers relatifs résulte de l'existence de la division euclidienne qui entraîne que cet anneau est principal. Les propriétés générales des anneaux principaux sont exposées dans l'article anneaux commutatifs, et nous nous contenterons ici d'énumérer les principaux résultats relatifs au cas particulier qui nous occupe ici.L'étude plus fine et plus spécifique de l'anneau Z (nombre de diviseurs d'un nombre donné, somme de ces diviseurs, etc.) introduit des fonctions arithmétiques multiplicatives. Les indications qui suivent sont très élémentaires, mais il est important de noter qu'un grand nombre des résultats obtenus ont été généralisés aux corps de nombres algébriques ; le dernier chapitre donne un aperçu de ces propriétés dans le cas des corps quadratiques, en renvoyant à l'article théorie des nombres - Nombres algébriques pour l'exposé de la théorie sous sa forme contemporaine.

Consulter en ligne

Suggestions

Du même auteur

DIOPHANTIENNES ÉQUATIONS | Marcel DAVID

DIOPHANTIENNES ÉQUATIONS

Article | UNIVERSALIS | Marcel DAVID | Universalis Edu | 2017

Diophante d'Alexandrie, vers les années 250 de notre ère, fut le premier à rechercher systématiquement les solutions en nombres entiers, ou rationnels, d'une équation ou d'un système d'équations polynomiales à coefficients entiers...

APPROXIMATIONS DIOPHANTIENNES | Marcel DAVID

APPROXIMATIONS DIOPHANTIENNES

Article | UNIVERSALIS | Marcel DAVID | Universalis Edu | 2009

La théorie des approximations diophantiennes concerne principalement l'approximation des irrationnels par des rationnels. Dans le cas d'un seul irrationnel, un rôle essentiel est joué par les fractions continuées (utilisées dès 16...